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Abstract—In this supplementary document, we provide ad-
ditional details on the architecture and implementation of
EMPERROR, the baseline perception error models (PEMs) and
the imitation learning (IL)-based planner in Section I, as well
as additional quantitative results in Section III. We also provide
additional qualitative results in the supplementary video.

I. IMPLEMENTATION & ARCHITECTURE DETAILS

In this section, we provide additional technical details on
the three PEMs considered in this work, as well as the IL-
based planner. In the following, all multilayer perceptrons
(MLPs) use the ELU activation function and layer normaliza-
tion after each hidden layer, except for the MLP integrated in
the transformer layers in EMPERROR and the planner, which
perform normalization at the output.

A. EMPERROR

Input Encodings: To obtain the latent object features Qg
and Qp used as input to the prior encoder, posterior encoder
and deterministic decoder, we first project the bird’s-eye
view (BEV)-position (x,) of the input S and B to polar
coordinates (r, cos(¢),sin(¢)). This then results in a 23-
dimensional vector containing polar BEV position and height
of the object center, spatial dimensions, heading angle, two-
dimensional velocity vector, per-class sigmoid confidence
scores and a one-hot vector indicating the input object as
ground-truth s,, € S or detector output f)n S ]3, respectively.
For ground-truth objects, the vector additionally contains the
first- and second-order angular and longitudinal dynamics.
Both object descriptions are then encoded to the model’s
feature space via two separate two-layer MLPs with input-
, hidden and output dimensions of [23 — 128 — 256]
and [27 — 128 — 256] respectively. The latent map
features Q¢ are obtained from a rasterized BEV map M €
R256x256X5 providing information on 5 different aspects of
the scene layout at a cell resolution of 0.5 m: The driveable
area, car park area, road- and lane dividers, as well as the
base layer provided by the nuScenes devkit [1]. The latter
consists of a ground projection of LiDAR points on static
infrastructure aggregated through multiple drives. The raw
input map is then processed by a 5-layer convolutional neural
network (CNN) similar to the configuration in [2]. We use
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kernel sizes of [7, 5, 5, 3, 3], with [16, 32, 64, 128, 256]
filters, where the first layer operates at stride one, while
the remaining layers operate at stride two. Each layer uses
ReLU activations and group normalization. To retain spatial
information after tokenization to the set of features Qq, we
add a two-dimensional sinusoidal positional encoding to the
final feature grid.

Transformer: For the encoders and decoder operating on
Qy, Qp and Quy, the same general transformer layer
configuration consisting of multi-head cross-attention, multi-
head self-attention (each with 8 heads) and a two-layer MLP
with dimensions [256 — 512 — 256]. Each attention opera-
tion, as well as the MLP, is followed by layer normalization.
Finally, the output of the layer is summed with its input.
As described in the main paper, the privileged approximate
posterior encoder uses two cross-attention operations to
attend to both Qp and Qu4, while the prior encoder and
decoder only cross-attend to Qa4. For both encoders and
the decoder, we set L, = Ly = 4.

Latent & Output Projections: The probabilistic encoders
use a shared two-layer MLP with dimensions [256 — 256 —
2 x 32], layer normalization and ELU activations to decode
their output to the mean and diagonal covariance of the
respective Gaussian. To ensure strictly positive values for
the variances, an exponential function is applied to the raw
output of the model. Each sampled per object latent variable
z, € R3? is then concatenated with the corresponding q7;
and processed by two-layer MLP with hidden dimensions
[256 4+ 32 — 256 — 256] to form the input to the decoder.
Finally, the output of the decoder is processed to form the
final regression parameters and sigmoid class scores as in
[3], [4], [5], [6], [7], [8] via two-layer MLPs with dimensions
[256 — 128 — 10].

Additional Implementation Details: We train EMPERROR
on 4 NVIDIA Tesla V100 GPUs using the Adam [9] op-
timizer with a batch size of 8, a learning rate of le—4,
weight decay of le—2, and clip the norm of the gradients
to a maximum value of 35. We pad ground truth-seeded
queries Q% and detector outputs B to a maximum of 300
objects per scene, and do not perform self- or cross-attention
for padded positions. During evaluation, we draw random
samples from the model’s latent prior to fairly evaluate the
learned distribution. For the greedy matching of ground truth-
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seeded queries, a threshold of 4m is used. We train for a
maximum of 300 epochs and select the model checkpoint
which is closest to the respective target detector in terms of
mean average precision on the validation set.

B. Baseline Perception Error Models

Architecture Details: We consider two main PEM config-
urations as baselines. We take inspiration from the ResNet-
based models in [10], [11] and extend them to our setting.
As these models expect an indicator of the degree of oc-
clusion for each object, we extend the ground-truth input
representation with the 4-dimensional discrete visibility score
provided by the nuScenes dataset [1]. Similar to EMPER-
ROR, we then use a similar two-layer MLP of dimensions
[30 — 128 — 256] to project the input to the feature
space of the model. We then apply a ResNetl8 [12] as in
[10], [11] and finally use two-layer MLPs to estimate the
sigmoid classification scores as well as the parameters of
either a Student-T- [11] or Gaussian [10] distribution for the
regression parameters. To stabilize convergence, we ensure
that the degrees of freedom for the Student-T distribution
are > 2 and omit the dropout layers. Note that for the
Gaussian, a diagonal covariance matrix is estimated, while
for the Student-T the model estimates a full scale matrix,
allowing the distribution to explicitly capture correlations
between regression parameters. We also design a simpler
configuration, where we replace the ResNet backbone with
a small MLP of dimensions [256 — 256 — 256]. For the
experiments incorporating map information, we use the same
convolutional map encoder architecture as EMPERROR. We
then concatenate the flattened spatial feature grid to each per-
agent input projection, adopting the input dimensionality of
the MLP- and ResNet backbones accordingly.

Additional Implementation Details: We train each baseline
PEM on 4 NVIDIA Ampere A100 GPUs using the Adam
optimizer with a batch size of 144, a learning rate of le—3
and the same weight decay and gradient clipping settings
used for EMPERROR. Similarly, we also sample from the
models estimated distribution over the output regression
parameters during evaluation. We train for a maximum of
a 1000 epochs, and select the model checkpoint with the
same logic as for EMPERROR after a warmup period of 400
epochs to ensure sufficient convergence.

C. Imitation Learning Planner

Architecture Details: We use similar components as in
EMPERROR to build the planner, with a similar two-layer
MLP of dimensions [18 — 128 — 256] encoding input
BEV detections as well as sharing the architecture for the
convolutional map encoder (but omitting the basemap layer
in the input). Each of the three options for the navigational
command ™ is modeled via a learnable embedding and
summed with the planning query qg,, along with a projection
of the ego vehicle speed °¢° obtained via an MLP with
dimensions [1 — 256]. After adding this planning context,
Qggo 1s processed by Lr = 3 transformer layers of similar
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Fig. 1. Planner Architecture. We design a simple IL-based planner
that incorporates several high-level design choices proposed in recent
literature [13], [14], [15]. It refines a learned planning query qggo through
repeated cross-attention to latent object- and map features and decodes the
result to an output trajectory 7 using an MLP. To provide the necessary
context for planning, embeddings of a discrete high-level navigational
command ¢™ and the current speed of the vehicle ¥°° are also given
as input.

structure as in EMPERROR, performing cross-attention to the
map and input detection results. The final trajectory is then
decoded by a two-layer MLP of dimensions [256 — 128 —
6 x 3].

Objective: The planner parameters w are learned via im-
itation learning (IL) from tuples (B, M, 9% "™ 1) con-
taining expert demonstrations 7. Specifically, we minimize
the absolute difference between the planned- and expert
waypoints:
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Additional Implementation Details: We train the planner
for 100 epochs on a single NVIDIA Tesla V100 GPU using
the Adam Optimizer with a batch size of 16, a learning rate
of le—4, weight decay of le—2 and clip the norm of the
gradients to a maximum value of 1.

II. ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative results in the supple-
mentary video, which allows to gauge the consistency of
errors sampled over time. We compare to both the MLP
+ Gauss and ResNet + StudT baseline configurations. Our
method is able to sample error patterns that are more consis-
tent both across the entire scene and over multiple time steps.
Besides not being able to explicitly model scene-consistent
error patterns, the baseline methods also show difficulty mod-
eling plausible errors that correctly capture all correlations
on a per-object level in comparison to EMPERROR, despite
their capability to implicitly (MLP + Gauss) or explicitly
(ResNet + StudT) model them. This is especially evident for
the velocities. We hypothesize that it is beneficial to model
this consistently when sampling the error patterns in latent
space, as in EMPERROR, rather than directly in output space.



III. ADDITIONAL QUANTITATIVE RESULTS

In Fig. 2, we plot the precision over different recall levels
as well as the regression errors for true-positives as they
relate to increasing recall, for the ’car’ class with Detr3d
as the target detector. This shows how the accuracy of
a detection hypothesis relates to the model’s confidence
value assigned to it. These plots illustrate the necessity to
also consider the calibration quality when evaluating PEMs,
which is addressed by our Cumulative Absolute Difference
Area (CD) metrics. In Figures 3 to 5, we show the aggregated
metrics for all classes and target detectors in comparison to
the MLP + Gauss baseline configuration.
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Fig. 3. PEM Characteristics for Detr3d.
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Fig. 4. PEM Characteristics for BEVFormer.
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Fig. 5. PEM Characteristics for StreamPETR.
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