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In this supplementary material we provide further im-

plementation and training details, as well as additional

discussion and results. We start by describing the used

hyperparameters and experimental setup in more detail in

Sec. I as well as measures to correct inconsistencies in

label definitions between the different datasets in Sec. II. We

then give an overview of the datasets’ class distributions in

Sec. III. Finally, in Sec. IV, we provide an additional visual

comparison of all methods and show quantitative results for

all random seeds of our main experiments, including per-

class results.

I. TRAINING AND IMPLEMENTATION DETAILS

As mentioned in the main paper, we use Mask-RCNN [2]

as the cascaded detection framework, where we replace the

mask predictor by the 3D bounding box regressor proposed

in [4] for the monocular 3D detection task. All models

are optimized using Stochastic Gradient Descent with a

momentum of 0.9 and weight decay of 0.1. The learning

rate is set to 10−2 with a linear warmup from 10−5 for

the first 1000 iterations. Besides the initial warmup period,

we use multi-step learning rate decay with task specific

schedules as detailed below. We select a batch size of 8 for

all experiments and compose each batch such that it contains

an equal number of source and target domain images.

Instance Segmentation: In all instance segmentation exper-

iments we train for a total of 24000 iterations, decaying the

learning rate by a factor of 0.1 at 18000 iterations. For both

loss terms Ldet and Latt, we use the original loss functions

and weightings of [2]. For data augmentation, we apply

horizontal flipping and scale augmentations, where we resize

the image such that the shorter side is of a randomly sampled

length between 800 and 1024 pixels.

Monocular 3D Detection: For Monocular 3D detection,

we train for a total of 120000 iterations, decaying the

learning rate by a factor of 0.1 at 72000 and again at

90000 iterations. For Ldet, we again use the original loss

functions and weightings of [2]. For the 3D detection loss

Latt, we use the disentangled Huber loss as in the original

work [4]. However, we found that equalizing the losses

by individually reweighting the different disentangled terms
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leads to improved performance. We thus use the following

weights for each of the disentangled terms: A factor of 2 for

the depth and rotation and a factor of 100 for the projected

center and box dimensions. We use no augmentations for the

monocular 3D detection task.

II. CONSISTENCY OF LABEL DEFINITIONS ACROSS

DOMAINS

Benchmarking the ability of domain adaptation algorithms

to mitigate distribution shifts can be challenging in practice

due to inconsistencies in the definitions of labels between

commonly used source and target domain datasets. Although

these inconsistencies are not always trivially resolved, there

are some that can be dealt with manually, which we describe

in the following.

The ”Rider” Class in Synscapes and Cityscapes: One

key inconsistency in labeling policies between Synscapes

and Cityscapes stems from the definitions of the rideable

vehicle classes (e.g. ”bicycle” and ”motorcycles”). In Syn-

scapes, these classes include the rider, while in Cityscapes

there exists a separate ”rider” class, a problem that effects

both instance segmentation and monocular 3D detection.

For instance segmentation, this can be resolved by utilizing

Synscapes’ semantic segmentation ground-truth: Since here,

riders are annotated as ”person”, we can accurately isolate

the vehicle and its rider in all instance masks by performing a

pixel-wise lookup for the ”person” class in the corresponding

semantic segmentation map. Although in principle one could

use the obtained instance masks to also correct the object’s

3D bounding box dimensions, this only works for non-

occluded objects. Since the variance in dimensions for these

classes is low in Synscapes, we instead heuristically correct

them by cropping their height by 0.65m and 0.6m for

”bicycle” and ”motorcycle”, respectively, which we found

to work well in practice.

Articulated Vehicles: Jointed vehicles like articulated buses,

trams and trucks can be difficult to describe with a single

3D bounding box when the angles between segments are

large. In Cityscapes, each segment is hence annotated with

a separate bounding box in these cases, while in Synscapes,

these classes are always annotated with a single bounding

box. We therefore remove the ”bus” and ”train” classes from

consideration for our monocular 3D detection experiments,

but keep the ”truck” class, since the number of jointed trucks

in Cityscapes is low.



Common Label Spaces: Since not all classes always exist

in both the source and target domain datasets, we use the set

of common classes for each scenario and task. Specifically,

for instance segmentation we drop the classes ”bicycle”

and ”train” in the VIPER to Cityscapes scenario, because

they either do not exist or are extremely rare in the source

domain dataset. Additionally, we merge the classes ”person”

and ”rider” as VIPER does not distinguish between the

two. For all other tasks and scenarios we use the full set

of semantic classes available in Cityscapes, unless there

are inconsistencies in label definitions that are not easily

resolved, as described above.

III. LABEL DISTRIBUTIONS

As discussed in the main paper, domain-adversarial feature

alignment approaches often do not consider class information

and can fail in the presence of label shift. In this section, we

show the distributions of object classes for the considered

datasets. We omit Foggy Cityscapes, since it has exactly the

same label distribution as Cityscapes. As can be seen from

Fig. 1 and 2, the relative frequencies of instance classes differ

quite strongly between the datasets. In addition, the average

number of instances per image for each class also varies

significantly, suggesting a shift in scene compositions.

IV. ADDITIONAL QUALITATIVE AND QUANTITATIVE

RESULTS

We provide further visual comparison of results on both

tasks in Fig. 3 to 6. Additionally, we report the full quanti-

tative results of our main experiments for each class over all

three random seeds in Tab. I to V.
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Fig. 1: Class distributions for monocular 3D detection. Relative occurence frequencies of each class overall (left) and

average occurences per image (right).
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Fig. 2: Class distributions for instance segmentation. Relative occurence frequencies of each class overall (top) and

average occurences per image (bottom).



(a) Ground-truth (b) Source only (c) DARCNN [1] (d) SWDA [3] (e) Ours (f) Ours + CWFA (g) Oracle

Fig. 3: Additional instance segmentation results (CS → FCS). Best viewed zoomed in.

(a) Ground-truth (b) Source only (c) DARCNN [1] (d) SWDA [3] (e) Ours (f) Ours + CWFA (g) Oracle

Fig. 4: Additional monocular 3D detection results (SYN → CS). Best viewed zoomed in.



(a) Ground-truth (b) Source only (c) DARCNN [1] (d) SWDA [3] (e) Ours (f) Ours + CWFA (g) Oracle

Fig. 5: Additional monocular 3D detection results (CS → FCS). Best viewed zoomed in.

(a) Ground-truth (b) Source only (c) DARCNN [1] (d) SWDA [3] (e) Ours (f) Ours + CWFA (g) Oracle

Fig. 6: Additional monocular 3D detection results (SYN → CS). Best viewed zoomed in.



Method Run mAP Person Rider Car Truck Bus Train Bike Bicycle

Source Only 1 16.22 23.85 10.46 38.70 5.70 33.66 5.97 4.91 6.52
2 17.03 23.95 11.28 38.57 6.89 31.25 12.50 5.26 6.52
3 15.84 23.75 10.94 37.51 5.55 31.48 5.96 4.97 6.54

DAFRCNN 1 17.54 24.17 12.86 38.91 8.20 35.10 8.42 6.21 6.46
2 17.40 24.48 11.48 37.80 7.97 31.42 14.07 5.81 6.17
3 16.98 23.87 11.81 38.37 5.37 34.70 9.68 5.87 6.15

SWDA 1 17.36 23.62 10.97 37.99 7.34 37.60 9.23 6.01 6.09
2 17.53 25.05 12.68 38.52 9.17 34.00 10.35 4.59 5.85
3 15.89 22.95 10.80 37.77 6.45 32.22 6.64 4.09 6.21

Ours 1 31.66 30.92 18.88 48.23 35.49 56.38 36.59 12.80 13.96
2 31.91 31.65 18.93 47.95 33.70 55.12 38.24 15.58 14.14
3 32.05 31.94 19.13 48.08 31.68 57.02 37.79 15.45 15.32

Ours + CWFA 1 30.83 30.44 20.72 48.26 29.99 55.54 32.59 15.24 13.90
2 30.78 29.92 21.19 48.09 31.04 55.61 30.95 14.93 14.50
3 31.25 30.51 21.69 48.58 31.33 54.53 35.72 13.70 13.92

Oracle 1 33.30 31.89 24.98 51.94 30.14 52.21 37.39 18.36 19.51
2 33.61 31.92 25.33 51.93 28.86 54.49 39.26 18.04 19.08
3 33.62 32.05 25.77 51.82 32.18 52.54 34.65 20.33 19.60

TABLE I: Instance segmentation. Results for SYN → CS. We highlight the best runs, as reported in the main paper, in

green.

Method Run mAP Person Car Truck Bus Bike

Source Only 1 6.56 7.32 14.42 3.12 7.87 0.09
2 6.90 9.20 14.60 3.65 6.84 0.19
3 6.25 7.16 13.51 5.44 4.98 0.16

DAFRCNN 1 7.79 7.97 16.46 7.07 6.99 0.44
2 9.06 10.27 17.36 9.50 7.83 0.35
3 7.72 8.40 17.11 8.09 4.50 0.50

SWDA 1 6.66 7.98 11.97 4.69 8.62 0.04
2 6.41 8.64 14.88 5.74 2.73 0.06
3 6.63 7.22 13.73 5.09 6.76 0.38

Ours 1 30.26 20.32 38.66 32.62 48.79 10.9
2 29.49 20.42 38.37 30.12 49.19 9.36
3 30.07 20.50 38.57 30.49 47.15 13.62

Ours + CWFA 1 30.23 19.77 38.38 31.70 48.26 13.03
2 29.03 20.50 38.08 29.72 45.10 11.73
3 30.07 20.50 38.57 30.49 47.15 13.62

Oracle 1 35.87 25.24 52.17 32.03 52.28 17.64
2 36.05 24.47 51.48 32.86 53.01 18.42
3 35.77 24.96 51.73 31.11 52.19 18.86

TABLE II: Instance Segmentation. Results for VIPER → CS. We highlight the best runs, as reported in the main paper,

in green.



Method Run mAP Person Rider Car Truck Bus Train Bike Bicycle

Source Only 1 13.10 16.38 13.93 25.81 8.96 19.29 4.22 7.06 9.16
2 13.29 16.59 14.37 26.86 8.99 18.33 3.86 7.71 9.59
3 13.92 16.51 13.00 27.97 12.09 23.10 3.91 6.12 8.68

DAFRCNN 1 21.86 22.50 18.57 38.58 17.77 32.91 20.34 9.98 14.24
2 23.25 23.41 19.42 38.77 18.17 35.81 22.89 12.65 14.86
3 21.22 22.38 18.57 37.99 18.83 34.01 13.07 10.44 14.43

SWDA 1 21.63 22.01 19.18 38.52 21.07 34.30 13.22 11.22 13.49
2 21.98 23.09 19.51 38.48 18.42 35.12 16.76 10.52 13.94
3 22.05 22.76 18.82 38.35 20.01 33.11 19.46 10.68 13.20

Ours 1 29.93 28.52 22.80 48.55 28.99 48.16 29.93 14.56 17.93
2 29.39 28.57 22.36 48.17 26.82 44.35 30.17 16.88 17.82
3 30.26 29.15 23.58 48.60 25.06 48.07 35.14 15.11 17.38

Ours + CWFA 1 30.31 28.47 21.90 48.76 27.71 48.76 33.80 15.16 17.92
2 29.58 29.13 22.72 48.34 25.17 44.81 33.01 15.71 17.75
3 29.67 29.06 22.66 48.52 27.68 45.20 30.90 15.20 18.11

Oracle 1 30.16 28.50 22.50 47.86 27.57 46.43 36.68 14.29 17.47
2 30.12 28.56 21.69 48.42 27.57 47.91 34.11 14.28 18.39
3 29.15 28.48 22.17 47.90 26.93 47.58 29.69 12.89 17.53

TABLE III: Instance segmentation. Results for CS → FCS. We highlight the best runs, as reported in the main paper, in

green.

Method Run mDS mAP Car DS Truck DS Bike DS Bicycle DS

Source Only 1 13.60 15.39 38.52 1.78 1.79 12.30
2 13.73 15.55 37.25 7.7 7.32 9.57
3 14.18 16.12 38.40 1.39 4.94 11.97

DAFRCNN 1 15.08 17.05 41.97 2.24 3.81 12.28
2 15.30 17.37 41.58 1.97 5.49 12.16
3 15.41 17.51 41.39 2.50 5.84 11.92

SWDA 1 14.82 16.92 38.00 1.62 8.87 10.78
2 13.90 15.72 41.21 1.80 3.69 8.90
3 14.56 16.49 41.17 1.63 4.30 11.16

Ours 1 20.39 23.33 44.98 7.6 13.8 15.19
2 18.93 22.06 45.50 8.69 10.19 11.35
3 19.02 21.84 45.02 9.68 6.34 15.02

Ours + CWFA 1 21.71 24.85 48.33 13.49 9.39 15.60
2 23.41 26.77 48.67 15.18 11.92 17.89

3 21.19 24.31 48.02 9.96 10.81 15.96

Oracle 1 23.34 25.20 56.90 9.20 10.56 16.70
2 24.89 26.67 55.14 14.12 11.55 18.73
3 25.03 26.09 55.87 9.26 16.08 18.90

TABLE IV: Monocular 3D Detection. Results for SYN → CS. We highlight the best runs, as reported in the main paper,

in green. We also report the mAP for the 2D projections of the 3D bounding boxes onto the image plane.



Method Run mDS mAP Car DS Truck DS Bike DS Bicycle DS

Source Only 1 12.80 13.93 31.44 4.00 4.58 11.18
2 13.82 15.01 29.96 1.22 9.89 14.23
3 13.71 14.77 32.78 3.02 6.60 12.43

DAFRCNN 1 19.46 21.11 44.82 9.10 6.33 17.58
2 17.72 19.09 42.41 6.23 6.00 16.25
3 18.50 19.86 43.46 6.87 7.72 15.96

SWDA 1 14.00 15.05 32.16 1.91 5.07 16.86
2 17.01 18.44 40.16 3.82 8.30 15.77
3 17.83 19.16 41.20 5.31 7.72 17.08

Ours 1 22.56 24.38 53.70 9.06 10.44 17.06
2 21.95 23.68 50.43 11.45 9.60 16.33
3 22.21 23.73 53.50 4.39 10.56 20.39

Ours + CWFA 1 23.82 25.77 54.68 10.96 10.98 18.67
2 22.33 23.94 52.90 6.42 11.27 18.71
3 24.19 26.43 53.00 7.73 16.53 19.50

Oracle 1 20.84 22.23 51.85 5.25 9.38 16.87
2 24.66 26.25 52.50 9.10 17.60 19.45
3 23.01 24.51 53.75 9.70 15.40 13.20

TABLE V: Monocular 3D Detection. Results for CS → FCS. We highlight the best runs, as reported in the main paper,

in green. We also report the mAP for the 2D projections of the 3D bounding boxes onto the image plane.


	Training and Implementation Details
	Consistency of Label Definitions Across Domains
	Label Distributions
	Additional Qualitative and Quantitative Results
	References

