publications

2024

2024

  1. emperror_dynamic_teaser.webp
    EMPERROR: A Flexible Generative Perception Error Model for Probing Self-Driving Planners
    arXiv, 2024
  2. dualad_teaser.webp
    DualAD: Disentangling the Dynamic and Static World for End-to-End Driving
    Simon DollNiklas HanselmannLukas Schneider, Richard Schulz, Marius CordtsMarkus Enzweiler, and Hendrik P.A. Lensch
    Conference on Computer Vision and Pattern Recognition (CVPR), 2024
  3. startrack_thumbnail.jpg
    Oral   STAR-Track: Latent Motion Models for End-to-End 3D Object Tracking with Adaptive Spatio-Temporal Appearance Representations
    Simon DollNiklas HanselmannLukas Schneider, Richard Schulz, Markus Enzweiler, and Hendrik P.A. Lensch
    Robotics and Automation Letters (RA-L), 2024
    Presented at International Conference on Intelligent Robots and Systems (IROS), 2024

2023

2023

  1. powerbev_thumbnail.gif
    PowerBEV: A Powerful yet Lightweight Framework for Instance Prediction in Bird’s-Eye View
    International Joint Conference on Artificial Intelligence (IJCAI), 2023

2022

2022

  1. king_animated_thumbnail.gif
    Oral   KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients
    European Conference on Computer Vision (ECCV), 2022
  2. labelshift_thumbnail.jpg
    Unsupervised Domain Adaptive Object Detection with Class Label Shift Weighted Local Features
    Andong TanNiklas HanselmannShuxiao DingFederico Tombari, and Marius Cordts
    ECCV Workshop on Learning from Limited and Imperfect Data (L2ID), 2022

2021

2021

  1. wsda_thumbnail.jpg
    Learning Cascaded Detection Tasks with Weakly-Supervised Domain Adaptation
    Niklas HanselmannNick Schneider, Benedikt Ortelt, and Andreas Geiger
    IEEE Intelligent Vehicles Symposium (IV), 2021

2019

2019

  1. vgnms_thumbnail.png
    Visibility Guided NMS: Efficient Boosting of Amodal Object Detection in Crowded Traffic Scenes
    Nils Gählert, Niklas Hanselmann, Uwe Franke, and Joachim Denzler
    NeuRIPS Workshop on Machine Learning for Autonomous Driving, 2019